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Abstract

An optimisation technique of reversed-phase liquid chromatographic separations based on gradient elution with a stepwise variation pattern
of the volume fractionϕ of the organic modifier in the water-organic mobile phase is presented. It uses a non-linear least-squares programme
with a Monte-Carlo search for initial estimates in order to determine the best variation pattern that leads to the optimum separation of a
mixture of solutes. The validity of the above methodology was tested by separating eight catechol-related solutes with mobile phases modified
by methanol or acetonitrile and variation patterns of two, three or four steps in theϕ values. It was found in all cases a very satisfactory
accuracy of the predicted gradient elution times, which is of the same order with the accuracy of the retention times predicted under isocratic
or linear gradient conditions. In addition, it was shown that the proposed optimisation technique is both effective and flexible but well-shaped
chromatograms are obtained under electrochemical detection only if steps with increasingϕ are used and the change inϕ is programmed to
occur at the intermediate of the predicted peaks.
© 2004 Published by Elsevier B.V.
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1. Introduction

Gradient elution in reversed-phase liquid chromatogra-
phy (HPLC) is based on the programmed change in mobile
phase composition, flow rate and column temperature, with
the most important mode the change in mobile phase com-
position[1,2]. It is a powerful separation technique, which
though has the drawback that only limiting cases of gradient
modes can be described by simple theoretical relationships.
For example, this is attained in the so-called linear solvent
strength gradient, where linear gradients are combined with
linear plots of lnk versusϕ, wherek is the retention factor
andϕ is the volume fraction of the organic modifier in the
water-organic mobile phase[2–8].

In a subsequent paper[9] we attempted to overcome the
above problem by subdividing a non-linear lnk versusϕ

curve into a finite number of linear portions. In the present
investigation we use a stepwise variation pattern forϕ.
Such a pattern results in a sum of isocratic elutions and
therefore it leads to simple analytical expressions for the
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retention time. The theory of stepwise gradient elution in
liquid chromatography was developed mainly by Jandera
and Churacek more than two decades ago[1,10–14] and
one of its most interesting applications is the approxima-
tion of an arbitrary gradient by a stepwise profile suggested
by Cela et al.[15–22]. Despite this, stepwise gradient elu-
tion has not attracted much attention. A possible reason is
that stepwise gradients cannot give satisfactory separations
without the use of a proper optimisation algorithm. Such
algorithms have been published[7,15,17] but if they are
not available, the final stepwise profile is proposed empir-
ically and it is either very simple[23] or the various steps
are combined with linear gradients[24–27]. In the present
paper first we present an alternative derivation of the fun-
damental equations and conditions of the stepwise gradient
elution based on kinetic arguments and next we attempt to
develop a simple and effective programmed optimisation
algorithm for the best separation of a mixture of solutes.

2. Theory

Consider a stepwise profile ofϕ with time t formed in the
mixer, like the one shown inFig. 1. For simplicity, the first
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Fig. 1. Schematic three-step variation pattern of ϕ formed in the mixer.

value of ϕ, ϕ1, that is sent from the mixer to the column for a
time period equal to t1 is considered to be the first step. The
nth step reaches the beginning A of the chromatographic
column at t = tD + t1 + t2 +· · ·+ tn−1, where tD is the dwell
time, i.e. the time needed for a certain change in the mixer
to reach also the beginning of the column. This step needs
more time, say t = tD+t1+t2+· · ·+tn−1+t∗n−1, to meet the
analyte inside the column. Suppose that this event takes place
at a distance s = sn from A. Similarly, the next step reaches
the beginning A of the column at t = tD + t1 +· · ·+ tn−1 + tn
and meets the analyte at t = tD + t1 + · · · + tn−1 + tn + t∗n
at a distance s = sn+1 from A. We observe that the analyte
is under the effect of the nth step, where the mobile phase
composition is equal to ϕ = ϕn, for a time period equal to
tn + t∗n − t∗n−1. Therefore, the distance Ln inside the column
that the analyte travels under the influence of the nth step is
given by:

Ln = sn+1 − sn = vϕn(tn + t∗n − t∗n−1)

= L(tn + t∗n − t∗n−1)

vϕn

(1)

because the velocity,vϕn , of the analyte under isocratic con-
ditions (ϕ = ϕn) is equal to vϕn = L/tϕn , where L is the
length of the chromatographic column and tϕn is the iso-
cratic retention time when ϕ = ϕn. In addition, the mobile
phase travels a distance equal to sn at a time equal to t∗n−1
and this distance becomes sn+1 when t = t∗n . Therefore,
we have:

Ln = sn+1 − sn = v0(t
∗
n − t∗n−1) = L(t∗n − t∗n−1)

t0
(2)

where v0 = L/t0 is the velocity of the mobile phase inside
the column, t0 being the column dead time. If the two ex-
pressions for Ln = sn+1 − sn given by Eqs. (1) and (2) are
equated, we obtain:

t∗n = t∗n−1 + t0tn

tϕn − t0
= t∗n−1 + tn

kϕn

(3)

where kϕn = (tϕn − t0)/t0 is the retention factor. The calcu-
lation of t∗n , n = 2, 3, . . . , p by means of Eq. (3) presumes
the knowledge of t∗1 , i.e. the time needed for the second step

with mobile phase composition ϕ = ϕ2 to meet the analyte
inside the column. It can be easily shown that:

t∗1 = t0
t1 + tD

tϕ1 − t0
= t1 + tD

kϕ1

(4)

Indeed, when the first change in ϕ (second step) reaches the
beginning of column at time equal to tD + t1, the distance
travelled by the analyte inside the column with constant
velocity vϕ1 = L/tϕ1 is given by sD = vϕ1(tD + t1). If s2
is the distance from the beginning of the column up to the
point where the second step meets the analyte, then we have:
s2 = v0t

∗
1 and s2−sD = vϕ1 t

∗
1 , from which we readily obtain

Eq. (4).
Eqs. (3) and (4) lead straightforwardly to the calculation

of the distance Ln inside the column that the analyte travels
under the influence of the nth step. Thus for L1 we have
L1 = vϕ1(tD + t1 + t∗1 ) = L(tD + t1 + t∗1 )/tϕ1 , which, in
combination with Eq. (4), yields:

L1 = L(t1 + tD)

tϕ1 − t0
= L(t1 + tD)

t0kϕ1

(5)

For Ln we have from Eq. (1) that Ln = vϕn(tn + t∗n − t∗n−1)

and eventually:

Ln = Ltn
tϕn − t0

= Ltn
t0kϕn

, n = 2, 3, . . . , p (6)

Note that Eqs. (5) and (6) are valid if the solute is not eluted
during the first or the nth step, respectively. If this prerequi-
site does not hold, then we have:

L1,final = L (7)

and

Ln,final = L(tR − tD − t1 − t2 − · · · − tn−1 − t∗n−1)

tϕn

(8)

where Ln,final denotes the distance inside the column that the
analyte is under the influence of the nth step and during this
step it is eluted. Eq. (8) arises from the fact that L/tϕn is the
velocity of the analyte during the nth step and the quantity
within the brackets is the time of the analyte movement under
the influence of this step, because tR is the elution time, i.e.
the time needed for the analyte to pass from the column, and
t = tD + t1 + t2 +· · ·+ tn−1 + t∗n−1 is the time needed for the
nth step to meet the analyte inside the column. Therefore,
tR − t = tR − tD − t1 − t2 − · · · − tn−1 − t∗n−1 is the time
that the analyte is under the effect of the nth step.

At this point it is worth noting that if we take the sum
L1 + L2 + L3 + · · · + Ln = L using Eqs. (5) and (6)
and pass to the limit n → ∞, then we readily obtain the
fundamental equation of gradient elution valid when ϕ varies
continuously with time after an elapsed time equal to t1 [9]:∫ tR−t0−t1−tD

0

dt

t0kϕ

= 1 − tD + t1

t0kϕ1

(9)

Eqs. (5)–(8) are the fundamental equations of the stepwise
gradient elution, because they can be straightforwardly used
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for the calculation of the gradient elution time, tR, of an
analyte which is under the influence of a certain stepwise
variation pattern of the mobile phase composition. Consider
a p-step variation pattern. The conditions that the analyte
would be eluted during the nth step, where n < p, may be
expressed as (L1 +L2 +· · ·+Ln−1)/L < 1 and (L1 +L2 +
· · · + Ln)/L ≥ 1, which are transformed into:

t1 + tD

t0kϕ1

+ t2

t0kϕ2

+ · · · + tn−1

t0kϕn−1

< 1 and

t1 + tD

t0kϕ1

+ t2

t0kϕ2

+ · · · + tn

t0kϕn

≥ 1 (10)

Now from the relationship L1 + L2 + · · · + Ln,final = L we
obtain

tR = (tD + t1)
kϕ1 − kϕn

kϕ1

+ t2
kϕ2 − kϕn

kϕ2

+ · · ·

+ t(n−1)

kϕ(n−1)
− kϕn

kϕ(n−1)

+ t0(1 + kϕn) (11)

If (L1 + L2 + · · · + Lp−1)/L < 1, the analyte is eluted
during the last step and from L1 + L2 + · · · + Lp,final = L

we obtain that tR is given by Eq. (11) provided that subscript
n is replaced by p.

3. An optimisation technique

When a certain stepwise variation pattern of ϕ versus t
is formed in the mixer, the gradient retention time tR can
be easily calculated from Eq. (11), provided that the depen-
dence of k upon ϕ is known. However, the determination of
the best variation pattern of ϕ versus t that leads to the op-
timum separation of a mixture of solutes necessarily needs
an optimisation technique. The optimisation technique we
propose is based on the non-linear least squares algorithm
developed in [28] and involves the following steps.

(1) We define the number of steps, say p, the maximum
elusion time, tR,max, and ranges within which the values
of ϕ1, ϕ2,. . . , ϕp, t1, t2,. . . , tp−1 vary.

(2) From these ranges a certain variation pattern of ϕ versus
t, i.e. a certain set {ϕ1, ϕ2,. . . , ϕp, t1, t2,. . . , tp−1}, is
selected using random numbers and the values of tR of
all solutes are calculated by means of Eq. (11).

(3) The differences δtR = |tR(solute i)–tR(solute j)| are cal-
culated for all possible values of i, j, and the minimum
value of δtR, δtm, and the maximum tR, tmax, are se-
lected. If tmax ≤ tR,max, then δtm and the set {ϕ1, ϕ2,. . . ,
ϕp, t1, t2,. . . , tp} are stored.

(4) Steps 2 and 3 are repeated m times and the maximum of
the stored δtm values, δtm,max, is determined. In addition,
the set {ϕ1, ϕ2,. . . , ϕp, t1, t2,. . . , tp} that corresponds to
δtm,max is selected. To clarify these points consider that
m is only 2, which means that we select using random
numbers two sets {ϕ1, ϕ2,. . . , ϕp, t1, t2,. . . , tp−1}. Then

we calculate the corresponding chromatograms and the
value δtm that corresponds to each chromatogram. The
maximum of these two values of δtm is the quantity
δtm,max, which is determined during step 4 under the
prerequisite that tmax of the chromatogram that corre-
sponds to δtm,max is less than tR,max.

(5) The components of the set {ϕ1, ϕ2,. . . , ϕp, t1, t2,. . . , tp}
found in the previous step are used as initial estimates
in a non-linear least squares routine, which determines
the values of ϕi, ti that give the maximum δtm value
under the constraint that tmax ≤ tR,max. It is evident that
these values of ϕi, ti correspond to a potentially good
variation pattern of ϕ versus t. This variation pattern and
its corresponding value of δtm,max are stored.

(6) Steps 2–5 are repeated q times and the best variation
pattern of ϕ versus t is selected on the basis of the δtm,max
values.

It is seen that the target of the optimisation is the maxi-
mization of δtm, i.e. the maximization of the minimum peak
pair distance,|tR(solute i)− tR(solute j)|. This maximization
is performed by means of a non-linear least squares routine,
which uses a Monte-Carlo search for initial estimates. The
objective function δtm may be replaced by δtm/tmax. In our
case both these two functions gave similar results. A better
objective function might be the minimum peak pair resolu-
tion, Rs = 2δtm/(wi + wj), where wi, wj are the widths
of peaks i, j, the distance of which is equal to δtm. The in-
corporation of Rs in our algorithm is straightforward pro-
vided that the dependence of wi, wj upon ϕ is known from
the isocratic study of the analytes. However, in most of the
cases the use of Rs leads to an unnecessary increase of the
computations because if we adopt steps with increasing ϕ,
as suggested in the present study, the dependence of peak’s
widths upon elution time is small (see Figs. 4–7) and there-
fore Rs is expected to give similar results with the functions
δtm and δtm/tmax.

4. Experimental

The liquid chromatography system used for the gradient
measurements is the same with that used in another paper
of this series of publications [9]. Thus it consisted of a Shi-
madzu LC-10AD pump, equipped with a low pressure gra-
dient system (FCV-10AL), a C18 column [250 mm × 4 mm
MZ-Analysentechnik column (5 �m Inertsil ODS-3)] ther-
mostatted by a CTO-10AS Shimadzu column oven at
25 ◦C, and a Gilson electrochemical detector (model 141)
equipped with a glassy carbon electrode. The detection
was performed at 0.8 V versus the Ag/AgCl reference
electrode. The mobile phases were aqueous phosphate
buffers (pH 2.5) modified either with methanol or acetoni-
trile. The eight catechol-related analytes were: dopamine
(DA), serotonin (5HT), 3,4-dihydroxy phenylacetic acid
(DOPAC), 5-hydroxyindole-3-acetic acid (HIAA), vanil-
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lylmandelic acid (VMA), 5-hydroxytryptophol (HTOH),
3,4-dihydroxyphenyl glycol (HPG) and homovanillic acid
(HVA).

Isocratic ln k versus ϕ data of the above analytes were
taken from [29]. The data obtained in the presence of ace-
tonitrile were recalculated using a constant t0 value equal
to 1.717 min, which corresponds to the average value of t0
[29].

5. Data analysis

The value of tD needed for the calculation of tR from
Eq. (11) can be obtained from the application of a two-step
gradient with t1 = 0. Then Eq. (11) yields:

tR = tD
kϕ1 − kϕ2

kϕ1

+ t0(1 + kϕ2) (12)

and therefore

tD = kϕ1

tR − t0 − t0kϕ2

kϕ1 − kϕ2

= (tϕ1 − t0)
tR − tϕ2

tϕ1 − tϕ2

(13)

where tϕ1 and tϕ2 are the isocratic elution times in mobile
phases with ϕ = ϕ1 and ϕ = ϕ2, respectively.
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Fig. 2. Differences between experimental and predicted retention times
under various stepwise (�), isocratic (�) and linear gradient (+) variation
patterns of ϕ in aqueous mobile phases modified with methanol. Data
(�) and (+) were taken from [9].

In order to determine tD by means of Eq. (13) we used two
solutes, HIAA and VMA, in both modifiers applying several
steps in the variation of ϕ. From these values we obtained
that in our experimental system tD = 4.6 ± 0.2 min [9].

The isocratic dependence of k upon ϕ was calculated from:

ln k = a − cϕ

1 + bϕ
+ dϕ (14)

using for a, b, c and d the values of Table 2 in [9]. Note
that Eq. (14) can be used as four- and as three-parameter
equation. In the latter case d was set equal to zero.

The technique followed for finding the optimum isocratic
separation of a mixture of analytes is described in [9]. For the
stepwise gradient elution, a suitable macro has been written
that realises at Microsoft Excel spreadsheets the optimisa-
tion techniques described in Section 3. The arrangement of
the spreadsheet we used for a three-step gradient was as
follows. The labels “ϕ1=” , “ϕ2=” , “ϕ3=” , “ t1=” , “ t2=” ,
“δtm,max=” are deposited in cells A2–A7 and the lower and
the higher limits of the set {ϕ1, ϕ2, ϕ3, t1, t2} are inserted
in cells B2–B6 and C2–C6, respectively. The macro using
random numbers selects from these ranges a certain set of
values and calculates the values of tR of all solutes by means
of Eq. (11), the objective function δtm, and finally selects
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Fig. 3. Differences between experimental and predicted retention times
under various stepwise (�), isocratic (�) and linear gradient (+) variation
patterns of ϕ in aqueous mobile phases modified with acetonitrile. Data
(�) and (+) were taken from [9].
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tmax. If tmax ≤ tR,max, then δtm and the set {ϕ1, ϕ2, ϕ3, t1,
t2} are stored. This procedure is repeated ∼1000 times and
the maximum of the stored δtm values and the corresponding
{ϕ1, ϕ2, ϕ3, t1, t2} set are selected. The macro deposits this
set in cells D2–D6. The label “δtm=‘’ is deposited in cell
C13 and one row below the following labels are deposited in
cells A14–I14: “ ln k(ϕ1)” , “ ln k(�2)” , “ ln k(ϕ3)” , “c1” , “c2” ,
“ ta” , “ tb” , “ tc” and “ tR” . In cells A15–A22 the values of
ln kϕ1 are calculated for all analytes of the mixture by means
of Eq. (14) using the value of ϕ1 in cell D2 and the values
of parameters a, b, c and d of Eq. (14), which are deposited
in cells G30:J37. The same procedure is repeated for ln kϕ2

and lnkϕ3 in cells B15–B22 and C15–C22 using for ϕ the
values ϕ2 and ϕ3 in cells D3 and D4, respectively. In the
next two columns, D15–D22 and E15–E22 the quantities
c1 = (t1 + tD)/t0kϕ1 and c2 = (t1 + tD)/t0kϕ1 + t2/t0kϕ2 are
calculated, respectively, using t1 and t2 values from cells D5
and D6. Note that these quantities appear in the left-hand
side of inequalities 10. In the next columns the following
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Fig. 4. Electrochemical detection chromatograms of an eight-component
mixture composed of (1) DA; (2) HPG; (3) 5HT; (4) VMA; (5) DOPAC;
(6) HTOH; (7) HIIA; and (8) HVA. They are recorded in an aqueous
mobile phase modified with methanol under (A) isocratic conditions using
ϕ = 0.29 and (B) using two steps in ϕ:ϕ1 = 0.23, ϕ2 = 0.50, and
t1 = 3.5 min, which correspond to the optimum separation of the mixture
when tR,max = 12 min. The dotted vertical lines indicate the predicted
retention times by means of Eq. (14) (A) and Eqs. (11) and (14) (B),
whereas the dash-dotted line shows the variation pattern of ϕ when it
reaches the electrochemical detector.

quantities are computed: ta = t0(1 + kϕ1) in F15–F22 pro-
vided that c1 ≥ 1, tb = (tD + t1)(kϕ1 −kϕ2)/kϕ1 + t0(1+kϕ1)

in G15 to G22 when c2 ≥ 1, and tc = (tD + t1)(kϕ1 −
kϕ3)/kϕ1 + t2(kϕ2 − kϕ3)/kϕ2 + t0(1 + kϕ3) in H15–H22.
Now the gradient time tR is calculated in cells I15–I22 from
the minimum value of ta, tb and tc. For the determination
of δtm the differences δtR = |tR(solute i) − tR(solute j)| are
calculated in cells A30–A57, since there are 8!/(6!2!) = 28
values of δtR, and the minimum of these values, which
is the objective quantity δtm, appears in D13. This cell is
the target cell of Solver, which runs through the macro to
maximise δtm by changing cells D2–D6. The solution of
Solver appears in cells E2–E6 and the maximum δtm is de-
posited in cell E7. The whole procedure is repeated 50–100
times and each solution with the maximum δtm is stored
in subsequent columns starting from E2–E7. Now the de-
termination of the best variation pattern that leads to the
optimum separation of a mixture of solutes as well as the
examination of a certain solution of Solver is straightfor-
ward. However, for the proper function of the macro certain
constraints should be imposed to Solver. For example, t1,
t2 cannot take negative values and ϕi cannot exceed 1 or be
negative.
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Fig. 5. As in Fig. 4 but for (A) ϕ = 0.11 and (B) using a four-steps
variation pattern, ϕ1 = 0.01, ϕ2 = 0, ϕ3 = 0.11, ϕ4 = 0.2, t1 = 10,
t2 = 9, and t3 = 27 min, when tR,max = 65 min.
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6. Results and discussion

The mixer used in the experimental set up can mix four
solvents. For this reason we used two- three- and four-step
variation patterns in ϕ to test the theory. In particular, the
validity of the proposed equations and the effectiveness of
the optimisation technique were tested by separating eight
catechol-related solutes with mobile phases modified by
methanol or acetonitrile and variation patterns of two, three
or four steps in the ϕ values. For comparison with our previ-
ous work on the linear gradient elution [9] we adopted three
preset maximum elution times, tR,max = 12, 45 and 65 min,
respectively, and we recorded 10 chromatograms per modi-
fier; 7 to test the proposed equations and 3 to test the opti-
misation technique.

Figs. 2 and 3 show the differences, δtR, between experi-
mental and predicted retention times under various stepwise
variation patterns of ϕ in aqueous mobile phases modi-
fied with methanol and acetonitrile, respectively. These
figures include also the corresponding differences under
isocratic and linear gradient elution conditions taken from
[9]. The predicted stepwise retention times have been cal-
culated from Eq. (11) accounting for inequalities 10 and
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Fig. 6. As in Fig. 4 but for acetonitrile instead of methanol using (A)
ϕ = 0.14 and (B) a two-steps variation pattern of ϕ of acetonitrile–water
solutions, ϕ1 = 0.1, ϕ2 = 0.2, and t1 = 0 min, when tR,max = 15 min.

Table 1
Mean value of the absolute differences between experimental and predicted
retention times

Modifier P-valuea Mean value of |δtR|

Isocratic Linear
gradient

Stepwise
gradient

MeOH 4 0.221 0.257 0.252
MeOH 3 0.495 0.399 0.332
ACN 4 0.232 0.230 0.254
ACN 3 0.458 0.369 0.342

a Number of the adjustable parameters used in Eq. (14).

using the four-parameter Eq. (14) for the isocratic depen-
dence of k upon ϕ. It is seen that the maximum deviation
of the predicted retention times from the experimental
ones is always less than 1 min. Moreover, the deviations
between theory and experiment obtained under stepwise
gradients are of the same order with those obtained iso-
cratically and under linear gradient elution. The same con-
clusion arises also from the absolute mean values of the
differences between experimental and predicted retention
times listed in Table 1. Therefore, the equations devel-
oped above describe absolutely satisfactorily the stepwise
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Fig. 7. As in Fig. 4 but for acetonitrile instead of methanol using (A)
ϕ = 0.05 and (B) a three-steps variation pattern of ϕ of acetonitrile–water
solutions, ϕ1 = 0, ϕ2 = 0.05, ϕ3 = 0.1, t1 = 20, and t2 = 23 min, when
tR,max = 65 min.
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gradient elution. However, as in [9], a basic prerequisite
for this is the accurate representation of the isocratic be-
haviour of the individual solutes. Thus from Table 1 we
note that the use of Eq. (14) as a three-parameter equa-
tion (d = 0) increases the error in the predicted retention
times.

In what concerns the performance of the proposed opti-
misation technique, we found that more than one patterns
of ϕ variation can lead to equally well chromatograms, es-
pecially when we adopt variation patterns of three or four
steps in the ϕ values. Selected chromatograms recorded
under optimum separation conditions using two, three and
four steps are shown in Figs. 4–7, where the dash-dotted
lines represent the variation pattern of ϕ when it reaches
the electrochemical detector. We readily conclude that
the proposed optimisation technique is both effective and
flexible, since we can use several variation schemes of
ϕ in order to achieve the best separation. A comparison
with the isocratic elution (shown in the same figures) and
the linear gradient elution presented in [9] reveals the
following.

The effectiveness of the stepwise gradient elution for sep-
aration of the constituents of a mixture is comparable to
that of the linear gradient elution. For example, the separa-
tion of the mixture of catecholamines can be achieved at a
maximum elution time less than 12 min, as in the case of
the linear gradient elution. However, as pointed out above,
the advantage of the stepwise gradient is that we can find
more than one variation patterns of ϕ that can be used for
an optimum separation at a certain maximum elution time,
tR,max. For example, the separation of the mixture of cate-
cholamines in acetonitrile–water mixtures can be achieved
at tR,max = 12 min using the following two-steps patterns:
(ϕ1 = 0.1, ϕ2 = 0.2, t1 = 0), (ϕ1 = 0.09, ϕ2 = 0.2, t1 = 2)
and (ϕ1 = 0.09, ϕ2 = 0.17, t1 = 0). Therefore, the stepwise
gradient elution technique is more flexible than that of the
linear gradient elution.

However, in order to take well-shaped chromatograms
two precautions should be taken into account. First, we
should use steps with increasing �, i.e. ϕ1 < ϕ2 < ϕ3 <

· · · , in order to obtain sharp peaks even at great tR values.
Second, and most important, we should have in mind that
the change in the mobile phase composition may change the
base line of the chromatograms. The same phenomenon has
been observed in electrochemical detection chromatograms
recorded under linear gradient conditions but here it is
more pronounced (Figs. 4–6) and it may distort the shape
of chromatographic peaks. Note the increase in the base
line when ϕ decreases (Fig. 5), which may also result in
peak distortion. These phenomena enhanced by the elec-
trochemical detection used in the present study have no
effect on the shape of the chromatographic peaks if we
take the precaution the steps to occur at the intermedi-
ate of the peaks, a condition that can be easily checked
and taken into consideration by the suggested optimisation
technique.

7. Conclusions

The stepwise gradient elution is a powerful variation of
the gradient elution. It gives analytical expressions for the
gradient retention time tR that can be used in simple opti-
misation techniques. The proposed optimisation technique
combines good performance and great flexibility, since sev-
eral variation schemes of ϕ can be used in order to achieve
the best separation of a mixture of solutes. However, in or-
der to record well-shaped chromatograms, especially when
an electrochemical detection mode is used, two precautions
should be taken into account: (a) we should use steps with
increasing ϕ and (b) the changes in ϕ should occur at the
intermediate of the predicted peaks.
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